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Abstract. We have studied the behaviour of the mean misfit and the specific heat of the one-
dimensional quantum sine-Gordon system (g2 = 4w) with a misfit parameter for two models
of impurities. We have used a Fermi-Bose relation and a self-consistent r-matrix approximation
for impurities. We have made numetical and analytical calculations for the mean misfit and the
specific heat for various cases.

1. Introduction

In a previous paper [1] we have discussed a commensurate—incommensurate crossover in
the one-dimensional quantum sine—Gordon system with a misfit parameter. The purpose
of this paper is to study the effect of impurities. In order to take account of non-
linear excitaiions, sine~Gordon models are widely used in many fields of condensed
matter systems, for example, charge-density-wave (CDW) systems such as tetrathiafulvalene-
tetracvanoquinodimethane (TTE-TCNQ) [2] and transition-metal dichalcogenides [3]. Also,
impurities play an important role in many fields of condensed matter systems, for example, a
dielectric system such as thiourea, in which the impurities stabilize the commensurate phases
[4). Tt is therefore a relevant and challenging issue to combine disorder (impurity) with non-
linearity [5]. For example, commensurate—incommensurate transitions in two-dimensional
adsorbed systems with quenched randem impurities have been investigated using the replica
and the Bethe ansaztz methods [6] or the decimation method [7]. Moreover, two-dimensional
X¥ magnets or solid films with quenched random disorder have been studied using the
renormalization- group approach {8, 9] or the replica and the renormalization-group methods
[10]. The motion of interfaces and dislocations in disordered media has also been discussed
[11].

Our mode! in this paper treats one-dimensional disorder rather than two-dimensional
disorder. When the randomness of impurity positions is restricted only in the misfit direction,
the two-dimensional classical problem [6] is mapped into our one-dimensional quantum
probilem.

We consider the following one-dimensional {1D) quantum sine—Gordon system with a
misfit parameter fi for the pure system:

o L\ 2
Hos = f [P2+(£+m) —j:%coscgqs)] dx (1)
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where ¢(x) and p(x) are, respactively, a Bose field and its canonical conjugate momenturm.
As in [12), we investigate two types of impurities. One is impurities that couple to the
potential term:

HL = f (Uo Z 8(x — x) cos[g (x}]) dx. @)
J

The other is impurities that couple to the gradient of the phase variable ¢ (x):
HE, = f (Vo ¥ 8~ x;)qu(x)) dx. (3)
7

For general values of g2, equation (1) can be transformed into the massive Thirring
model [13, 14], which includes the term of the fermion interaction. This massive Thirring
model is exactly solved by the Bethe ansarz [15,16]. At the special value of g° = 4w,
the fermion interaction vanishes and the model reduces to a massive free-fermion model
Hamiltonian:

d d ~
B = f ["‘i (Kff;ré-;fﬂ - ‘.ffgg;l!fz) — B + ) + mo(uive + ¢§W1)] dx
)

where | and r; are fermion Gelds, it = ./ and mg = aige/4a (c is the lattice constant
and a; ~ O(1}). In this case we may identify the soliton as a Fermi particle. The original
non-linearity remains as a Fermi statistic,

Using the momentum-space operators g; ;. defined as

Y (x) = L7 3" g, 4 exp(ikx) (5)
k
we gel

HYp = Z Allkoy — B1 + moop) Ax ©)
%

where A,t = (alf‘k,a;k), Ay is its adjoint column matrix and {o;} are the Pauli matrices.

This pure system has energy bands E = (k% 4+ m3}!/2. The impurity potential terms are
writien as

Hy =Y Al ( Z Vi expl—itk — &)x;lon /L) Ay (7

k&

H = Al ( Z Vp expl—ilk ~ ©')x;) /L) Ay (8
P
where Vy = a,Upc and ¥, = J??Vu.

We use a 2 x 2 matrix thermal Green function, G (t) = — (T A (T} A}; ()}, where
T: 1s Wick’s notation of the ordering operator for the imaginary time 7. For the pure system
{H{g) the Fourier transform of G)(z) is given by

GRUiw,) = liw, + ji — (koz + meuy)] ™ )

where w, =2nT{n + %), with n being integer, are the Matsubara frequencies,

In [12], we have considered the same sine—Gordon syster, but with no misfit parameter,
ie. f = 0. There we have used the self-consistent r-matrix approximation for impurities
and derived the expression for the density of states. In our problem we make the same
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approximation for impurities. Then the results are only to rewrite iw, — iw, - f in
equations (15)—(18) of [12]. For the impurity potential &, ., we obtain

imp?

L VIZIEZ!,,/Z( ~,2, + ~§)1/2 .

idy, = iw, + 0+ : 10a
PR T T TV A+ Viia /B + i) P2 (99
_ Vi ~2 ~\1/2
Fon = g+ myVy e N/ 2, ) (104)
L+ VE/4 + Vi, (& 4+ m2)V2
For the impurity potential HZ . we obtain
‘e =2 =241/2
i = i + i — i Vy e B/ 2 L) (110
1= V2/A + Vaidon /(@2 + I)V2
~ Vo (2 (62 4 22
o == g+ Vg 2] Uy ¥ 1) (115)

1= V24 + Vai@u [ (82 + m2)12

Here &, and #, are, respectively, the renormalized frequency and the renormalized mass
of the Green function averaged over the random spatial distribution of impurities:

Gr(iwn) = [id, — (ko3 + #it,o1)] 7. (12)

The concentration of impurities is denoted by n;.
Defining U, = &, /., we obtain from {10a) and (106) that

- mlU,
n — = Uy 13
@n — i1 Umo-PA[_]_1/(1_[_1.1},3)”2 (13)
and from (11a) and (115) that
On — ifi = Upig + ~niVa - (14)

Az +1U,/ (1 + DDV

Here A; = 1/V; + Vi /4 and Ay = 1/ Vo — V3 /4. By replacing iUV, — U and iw, — w in
(13} and (14), we get analytically continued equations:

@+ = Umg + nU /14 + /(1 — U] o (15)
@+ o= Umg+ /4 + U/(E ~ U2, (16)

In (153 and {16}, U is determined as a function of w + &, U = U{e + 1).
The mean misfit (or winding number) w is related to the fermion number N =
N(ﬂ's Ri, T):

w = (1//7) (3 /3x) = —(N — No)/L an

where N is the fermion number when i = 0 and #; = 0. The fermion number N can be
expressed with use of the density of states D(w and the Fermi distribution function f(w}:

N (G, T) = § f D) f (@ — i) dw (18)

D(w) = In(U (@)/[1 - UHw)]") (19)
Flw) =177 +1). (20)
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At finite temperature 7 the mean misfit is divided into three parts:

wy = —[N{f,n;, T) — N0, m;, T)I/L 210
wy = —(N (O, ni, T) ~ N, m;, H}/L (22)
wy = —[N(0, m, 0) — N(0,0,0))/L. (23)
The specific heat per unit length is written as
_1 (@ = By 1
C= T f D) 272 14-cosh{{w — fi)/T] do- (24)

In the following sections we will discuss the above mean misfit and the specific heat of
the system.

2. Impurity potential .

2.1. Ground-state properties of the mean misfit

We will start from the discussion of the ground-state properties of the mean misfit. At
T =0, the fermion nember is

I &
N(i,n, T =0)= = D(w) dw. (23)
—A

This is anaiyticaily calculated to become

- U _ my
M(l — U2 ‘ (1— U2)l/2

N(ﬁ,ni,T=0)=§{Im|:

2
3] i

—Elog(Al-!-m) }-FA]. (26)
Here UV is determined by putting w = 0 in (15):

o= molU + mUf[A; + 17(1 = UHY2L 27
Then the mean misfit at T = 0 is written as
w 1 pooouU 1 ni 1 ’
= _— — et —1 _— .
mo T o [mo (1=Un2 (1-UH2 2mg o8 (Al * (1- Uz)l"z) } @)

This behaviour is shown in figure 1(a) for ¥7 > 0 and in figures 2(a) and 3(a) for V; < 0.

2.1.1. V; > 0. For the repulsive impurity potential V; > 0, there is a gap energy w, for
all concentration of impurities. For |w| < g, the density of states is zero. Near the gap
energy, the density of states 15 expressed as

N2
D(w) ~ ! (lw' wg) (29)

a1 —UDE N\ mo

where Uy is the corresponding value of wg, and a = —[d*(w/m)/dU z]u=ug /2. Integrating
D{(w) with respect to w from wg to &, we obtain the mean misfit:
w2 [ = wy)/mol

mo 3w a2(l—UZH

(30)
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Figure 1. (2) Behaviour of the mean misfit as a function of the parameter j2 at various
temperatures T/mg = 0, 0.2 and 0.6 (V] = 1.0, ni/my = 0.1). The linear line w = ~i/n
is that for the high-temperature imit. An enlarged scale is used in the right part to elucidare
the critical behaviour of the mean misfit at i ~ wy. (b) Behaviour of the mean misfit as a
function of témperature for a set of parameters &/my = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4
(Vi = 1.0, nj/my = 0.1}, (c} Behaviour of the specific heat as a function of temperature for a
set of parameters fi/my =0, 0.4, 06,08, [0, 1.2 and 1.4 (Vi = 1.0, rifry = 0.1). Here the
specific heat for a massless boson gas with no impurities is subtracted, AC = C —r T/3.

For low concentration of impurities, UZ ~ 1 — (mi/mo)* and a ~ (n;/mo)~2/2. TFhen the
mean misfit is written as -
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Figure 2, («) Behaviowr of the mean misfit as a function of the parameter A at various
temperatures T/mg = 0, 0.2 and 0.6 (V| = —2/3, n;/mu = 0.1). The linear line w = —fi/m is
that for the high-temperature limit. () Behaviour of the mean misfit as a function of temperature
for a set of parameters ji/my = 0.2, 04, 0.6, 0.8 and 1.0 (V| = —2/3, my/my = O.1). ()
Behaviour of the specific heat as a function of temperature for a set of parameters i/mq = 0,

0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 (V) = ~2/3, n;/my = 0.1). Here the specific heat for a massless
boson gas with no impurities is subtracted, AC = C - nT/3.

_u.i. ~ _2'\/5- ﬂ)—z [L-'-C!Jg S (31}
Mo 3Ir \mp mo '

1
Qo 05 10

The exponent of the deviation of fi from the gap energy is 3/2, which is different from that
of the pure case, 1/2 [1,17). From the left part (T = Q) of figure 1(a) the exponent seems
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Figure 3. (a) Behaviour of the mean misfit as a function of the parameter & ar various
temperatures 7/my = 0, 0.2 and 0.6 (V) = --2/3, #i/my = 0.8). The linear line w = ~ffm s
that for the high-temperatuse limit. (b) Behaviour of the mean rnisfit as a function of temperature
for a set of parameters ft/mg = 0.2, 0.4, 0.6 and 0.8 (V; = —2/3, n;/my = .8). (¢) Behaviour
of the specific heat as a function of temperature for a set of parameters ji/mq = 0, 0.4, 0.6

and 0.8 (¥, = ~2/3, nifmy = 0.8). Heee the specific heat for 2 massless boson gas with no
impurities is subtracted, AC = C — = T/3.

to be 1/2, but enlarged scale (the right part) clearly shows that the exponent is not 1/2 but
3/2. :

9483
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2.1.2. V, < 0. For the attractive impurity potential Vi < 0, there is a gap energy
wy for the impurity concentration n;, which is smaller than the critical concentration n;,
(= (-A1 — Dmp). Near the gap energy the expression of the mean misfit is the same
as (30). The exponent of the deviation of i from w, is 3/2. For low concentration of
impurities, U, ~ Us; and a ~ (1 — UZ)™*(n;/mq)~"/2, where Up; is the normalized
bound-state position, Ug; = |1 — V2/41/(1 + V{/4). Then the mean misfit becomes

w 9 /o \I B i — .\
w2 <_) (1~ U2y (_——g) . 32)
myg "y

‘We show the behaviour of the mean misfit in figure 2{(a). It shows that the exponent of the
deviation of f from w, is 3/2.

For the impurity concentration #n; > n;c, the density of states at & = 0 is finite. The
mean misfit shows a linear dependence on & for smaller values of fi:

w ~ —Doftf (33)
where Dy is the density of states at w = O
Do = [(1 + A1 + mi/ma)(1 — Ay ~ mi/ma)]' 2. (34)

We show the behaviour of the mean misfit in figure 3(a). It clearly shows the linear
dependence on fi for smaller values of ji.

2.2. Finite-temperature properties of the mean misfit

For the impurity potential Hﬁnp, wy becomes

1 -
w == [ D@~ - S 6
Using the symmetric property of the density of states D{(w} = D(—w), we obtain

sinh(ji/T)
cosh(ft/T) + cosh{w/ T} -

The other parts wo and ws become zero. We show the behaviour of the mean misfit
wy in figure 1{a) (V1 > 0} and figures 2(a) and 3{z) (V| < 0) as a function of the
natural misfit (the chemical potential fi) at two temperatures T/mg = 0.2 and 0.6. For
the case of finite gap energy, the mean misfit increases exponentially at lower temperature
T/mp = 0.2 but linearly at higher temperatare T/mq = 0.6 and approaches the linear
line wy = —[i/m (fgures 1{a) and 2(a)). For the concentration »; > M {figure 3(a);
Vi = =2/3, nj/my = 0.8), the mean misfit shows a linear dependence on f for smaller
values of [i and approaches the linear line wy = —[i/7 with increase of temperature. In
figures 1{b), 2(b} and 3(b), we show the mean misfit as a function of temperature for a set
of parameters fi/mg = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 (figure 1(0)), i1/mq = 0.2, 04, 0.6,
0.8, 1.0 (figure 2(b)) and Gi/me = 0.2, 0.4, 0.6, 0.8 (figure 3(b)). For the case of finite
gap energy (figures 1(b) and 2(b)), the curves tend to-zero at zero temperature for smaller
values of ji(< wg) but tend to finite value for larger values of f(> w,). For the case of
zero gap energy (figure 3(b)), the curves tend to finite values at zero temperature.

Next we will give the analytical expressions of the mean misfit for several limiting
cases.

w = f ” b 36)
T Jo
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2.2.1. Lower temperatures. At lower temperatures we will use the density of states (29)
estimated near the gap energy for m < my,

N2
D(w) ~ ! (“"‘ "’g) .

a2(I = U\ my

The case of Vi > 0 corresponds o the infinite critical concentration n;, — o0, and we
always use this form for any concentration of impurities, The mean misfit is given by the
following expressions for the three cases:

(i) it < wyg
sinh(i/ T) T3 2g—os/T | B
" (mamo)/2(1 — U2 ' (37)
(ii) /o = w,
sinh(fi/ T)TY2%e~#T 2~ /2 -
" (mamg) (1 — UIR T 2 £(3/2) (38)
(i) 2 > w,
~ 1 (2, ap, T )
7 (amo) 21 ~ U (3(“ W magr )

Here ¢£(s) is a zeta function and £(3/2) ~ 2.612, £ (2) = 7%/6 == 1.645.
For n; > n;. the density of states is estimated as D{w) ~ Dy + Daw?. Then the mean
misfit becomes

w ~ —Dofifm — Dofi(wT? + &%) /3 (40)

which shows a linear dependence on i for smaller values of fi.
For the critical impurity concentration m; = nye, the density of states is estimated as

D(w) ~ (W3/2)[~2(41 + DI (Jwl/mg) V. 1)

Then the mean misfit becomes

V3 Y@ AN E IS
w o~ = [-2(Ar+ 1) (%) 7 Z+T§(§) 42)

for i >» T and

w ~ —(v32m)[-2(A, + NPT Ime) Pl (43a)
® LB dx

= —_  ~1.02% T (43b

! fo 2cosh*(x /2) (430)

for i «7T.
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2.2.2. Higher temperatures. At higher temperatures it is convenient to use the following
expression for the fermion number:

il

N(i,n, T) = LTZW

+— (A + it} (44)

where U, is determined in (13). At higher tempexatures T 3> mq, n;, [U,| becomes large
and is approximated as

Uy ~ (0 — it £ m/ A7)/ (mo + s/ &) (45)
where we take the upper sign + for @, > 0 and the lower sign — for w, < 0. Then the
fermion number becomes

LT (mo+ni/A\
NG m )~ (TR

2
2 = 2
xx[w‘” (2 +”—————‘/§ﬂ ) w‘”( —————n’/‘: ;m)] +§(A+ﬁ.)
(46)

where ¥ (z) are poly-gamma functions. We will give the expressions for the mean misfit
w at higher temperatures in the two limiting cases:

i pgT
N_E l mo 4 nifA (2}( RI/AZ)
e [H 2( 27T ) v 2T “7)

i (I _ (m0+"i/Al)2)

3 (48)

2.3, Specific heat

In this section we will discuss the specific heat of the system. In figures 1{c), 2{c) and
3(c) we show the behaviour of the specific heat as a function of temperature for a set of
parameters {or chemical potentials) ft. We have subtracted the specific heat for a massless
boson gas with no impurity, C = =7T/3, which is just the high-temperature limit of the
system. Figures I(c) (V; = 1, mi/mp = 0.1, wg/mp =~ 1.0040) and 2(c) (V; = —2/3,
nifmp = 0.1, wy/mp = 0.4695) are like each other and correspond to the case of finite gap
energy. Figure 3(c) (V1 = —2/3, ni/mo = 0.8) corresponds to the case of zero gap energy.
Next we will give the analytical expressions for several limiting cases.

2.3.1. Lower temperatures. At lower temperatures we will use the density of states (29)
estimated near the gap energy for n; < ni.. Then the specific heat per unit length is given
by the following expressions for each case:

@) i <oy

Az
1 (@g = B)"_ —w,-yiT

- 4
aVi(1 = UDP2 2mwmy TH2 (49)
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(i) i = g

I . 15732 1 )
(1 — UZ7P 8(rmo) 2 (1 = Zﬁ) L(3/2 (50)

(i) it > wg

1 2 (h—w\'?
a[l’z(l-—Ué)g'p'JT( o ) T¢(2). (51)

Here £(5/2) =~ 1.341.
For n; > ni,, the specific heat is estimated as

C ~ DT /3 + (w DaT/3) (A2 + T2 T2 /5). (52)
For the critical impurity concentration n; = #;, the specific heat is estimated as

€ ~ (V3/D[~2A; + DI P (i/me) PrT/3 (53)
for i3> T and

C ~ /3/2)=2As + DIVQT )L~ 2T (0/3)5(7/3) (54)
for fi « T. Here T’(10/3) >~ 2.778 and ;‘(7/35 = 1.415. In obtaining (54} we have used

(41) for the density of states and the table in [18].

2.3.2. Higher temperatures. At higher temperatures it is convenient to use the method
of Luttinger and Ward [19] to calculate the thermodynamic potential of the system. We
expand the thermodynamic potential over (mo + #;/A;)/T and differentiate this potential
with respect to T. Then the entropy of the system per unit length becomes

7T a1 ni/ Al m( nif A% — )]
S ~—3—+(m0+ﬂx/A1) {'2—;1:'1“1’\3[7?;2—1:2‘_1” 3 ——5_;?’"—‘ . (55)

From this entropy we get the specific heat of the system,

o~ (o 2 [ - v (355
3

2T 2miT? 2nT
_ (nJ/A]) @ ( /Az ]
8x3T? Sirs ¥ 2::T (56)
for t € T and
C ~ (@T/3L + (o +nmif A1)/ 2ED] (57)

forga» T.
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3. Impurity potential H?2

imp
3.1. Ground-siate properties of the mean misfit

At T =0, the fermion number (equation (18)) is analytically calculated to become

~ L - Mo
NGmT=0=2 {Im [”’(1 —Uniz T (1-Unine
R U 2 -1 1

_ Elog(A;%-m)]-i-nitan (A_g)+A‘ (58)
Here U is determined by putting @ = 0 in (16),

fi = moU +msf[Az + U/(1 — UH2. (59)
Then the first part of the mean misfit at T = 0 is written as
w1 o  v@ 1 m u@ Y
" [mo T Lt G Uz(ﬁ)]‘”)

1 n U0 ?
a2 T 2mg (Az TP U2(0)11f2) } - €0)

This behaviour is shown in figure 4(a) (Vo = —2/3,n;/my = 0.15). In figure 4(a), the
impurity concentration #; is assumed to be smaller than the critical concentration ni, in
which the density of states at w = 0 becomes zero (equations (51)-(53) and figure 5 in
[20)). For n; < ny, there are two gap energies wg1 (> 0) and wg(< 0). For wy < @ < wg,
the density of states is zero. Near {i ~ wy;, the mean misfit is given by

w2 (B —wg)/m)?
Mo 3 al2(l _K.ngl)am o

v (B1)

where a = —3 d*(w/m)/dU} and Uy is the corresponding value of the gap energy g
The exponent of the deviation of fi from wg is 3/2. For n; > nj, the mean misfit shows a
linear dependence on & for smaller values of f,

wy ~ —Dofi /7 (62}

where Dp is the density of states at w = 0. The second part of the mean misfit ws vanishes.
The third part w; becomes

wy = —(m/m) tan™" (1/A2) (63)

for n; < m;. and

2
n -1 1 1 g 1 U(O)

=t —_— —Imj——-oroa———+—logl Ay} —— 64
=Ty (Az) e [[1 “T2OPE 2 g( Fi-wom) |
for n; > ni;. We note that ws is not zero, in contrast to the case of the Hi}np potential.
This shows that a mean misfit is induced by impurities., The behaviour of w; is shown in
figure 4(b). For n; > nic, ws deviates from the linear line. This deviation is proportional to
(15 — mic)™/% at my ~ ic.
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3.2, Finite-temperature pmperries of the mean misfit

For the impurity potential H~ | the first part of the mean misfit w; becomes

:mp!

m=—;fmmww—m—fwmm (65)

We show this behaviowr in figure 4(a) (Vo = —2/3,m;/mp = (.15} as a function of i
at three temperatures T/mo = 0.2, 0.6 and 1.6. In this case of finite gap energies wy
(> 0) and wg (< 0), the mean misfit increases exponentially at lower temperatures but
linearly at higher temperatures and approaches the linear line w = —f/x. In figure 4(c)
(Vo = =273, n;/mp = 0.15) we show the mean misfit w, as a function of temperature for
a set of parameters /my = 0.2, 0.4, 0.6, 0.8. For i < wy the mean misfit tends to zero
as T approaches zero. In figure #(d) (Vo = —2/3, n;/my = 0.15), we show the second part
of the mean misfit wy as a function of temperature. This part is related to the asymmetric
property of the density of states, D{—~w) = D(w).

Next we will give the analytical expressions of the mean misfit for several limiting
cases.

3.2.1. Lower temperatures. Atlower temnperatures we will use the dens:ty of states estirated
near the gap energy gy for n; < ny,

1/2
1 @ = g / ‘ (66)
a2 1 = UZPR\ me

Then the mean misfit is given by the following expressions for each case:

D(w) =

() g < gt
T3/2g=wg /T e/ T _ 1
W~ 172 2 y3/2 (67)
(ramo}/2(1 - Ug)¥ 2
(i) i = wg
73/ 1 —e AT 3 — f
~— : 3/2 68
w) ram) (1~ UB)B 2 £(3/2) (68)
(i) 2 > wgt '
1 2pn A2 LT
~— T e e I 6
e R TR (3(u )+ S ST (69)

For the impurity concentration »; > mj, the density of states is estimated as D(fi}). Then
the mean misfit becomes

wy ~ — DY/ - (70)

which shows the linear dependence on fi for smaller values of [i, since D{ji) ~ Dy for
fi ~ 0. For the critical impurity concentration r; = ni;, the density of states is given by
(66) by putting ,; = 0. Then the mean misfit becomes

1 2 ~3/2 {(2)T? -

“ JT(amo)le(l - U2 )3/2 ( pr 2172 > (o
1 T2 )

v £y <D (716)

a{amp)2(1 — ngl)-m 2
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Figure 4. {¢) Behaviour of the mean misfit w; as a function of the parameter f at various
ternperatures T/mpy = 0, 0.2, 0.6 and 1.6 (Vi = —=2/3,ni/mg = 0.15). The linear line
w = —jif7 is that for the high-temperature limit. (&) Behaviour of the mean misfit ws at
T = { as a function of impurity concentration #; (V2 = —2/3). (¢) Behaviour of the mean
misfit wy as a function of temperature for a set of parameters i/mg = 0.2, 0.4, 0.6 and 0.8
{(Va = =2/3, ny/my = 0.15). () Behaviour of the mean misfit wj as a function of temperature
(V2 = =243, nj/my = 0.15). (e) Behaviour of the specific heat as a function of temperature for
a set of parameters f/mg = 0, 0.2, 04, 0.6, 0.8, 1.6, 1.2 and 1.4 (V4 = =2/3, ni/mg = 0.15).
Here the specific heat for 2 massless boson gas with no impurities is subtracted, AC = C—-a T /3.

where
oo 1/2
J= f LN}
o 2cosh*{x/2)

It is possible to make analytical calculations for the second part of the mean misfit wy
at Jow temperatures. For n; < n;,
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Figure 4. (Continued)
TH2e-0n/T
wy ~ — S ‘ - )
2(zwmoa)2(1 — Ug /2
and for n; > ny,
wy ~ —w D T2 /6 (73)

where we have used the formy D(w) ~ Dy + D@ for the density of siates at @ ~ 0.

3.2.2. Higher temperatures. At higher temperatures it is convenient to use the following
expression for the fermion number:
- '_iUn L -
N b INV=LT Y ———— 4+ —(A 74

where U/, is determined in (14). At higher temperatures T >» my, |U,| becomes large and
is approximated as

Up ~ oy —ifi +ini/ (A2 £1))/mo (75)
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where we take the upper sign + for w, > 0 and the lower sign — for @, < 0. Then the
fermion number becomes

i Ty~ L (o N[, 1 i
NG, s, T) 2(%1)4¢ 2 T \ B
Y L i —(A+E
" {2+2ﬂ (A2~i+m)]}+n(z\+u). (76)

We will give the expressions of the mean misfit w at high temperatures in the two limiting
cases:

@) fms < T |
oA {Lymo N A N ~]
e n[z(znr) ("“ A§+1)¢ 72+ n
Gyg»T
1/ 1 m%
Y fr(“ 2;1~niAz/(A§+i))' 7

Here ¥ ®(1/2) = —14£(3) ~ —~16.829.

3.3. Specific heat

In this section we will discuss the specific heat of the system. In figure 4(e) (V, = —2/3,
ni/mg = 0.15) we show the specific heat per unit length as a function of temperature for
a set of misfit parameters i/my =0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 'We have subtracted
the specific heat for a massless boson gas of no impurities, C = xT/3, which is just the
high-temperature limit of the system. In this case of finite gap energies (wg; /mo = 0.343 95,
wgo =2 —1.008 41), figure 4(¢) is similar to figure 1(c} or 2(c).

Next we will give the analytical expressions for several limiting cases.

3.3.1. Lower temperatures. At lower temperatures we use the density of states (66) for
n; < nic. The results are only to change wy — wy), Uy = Uy in (49)~(51). For n; > ny,
the specific heat is estimated as

C ~aD(R)T/3 (79)

with the density of staies at @ = fi. For the critical concentration n; = n;., the density of
states is given by (66) by putting w, =0, ie.

1 w 12
Diw) = alf2(l —~ U:l')w (;6)

for @ > 0 and D{w) = 0 for @ < 0. Then the specific heat per unit length is estimated as
1 i )” PaT -
Cr——————] == 80
a'2(1 - Uyt (mg 3
for fi »» T and

1 15732 1
€~ a'2(1 — U232 8(zrmo)' 2 (1 - Zﬁ) £5/2) (81)

for i ~ Q.
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3.3.2. Higher temperatures. At higher temperatures we use the same method as in
section 2.3.2. We expand the thermodynamic potential over mg/T and differentiate this
potential with respect to T. Then the entropy per unit length becomes

7T L -1 i i L (B
5 R i i) —_— L. .
St [[2%3” + e{f#:rtsz (Az-l-l #) v [2 27T (AZ'H M)] }:H
: (82)

The first term is the contribution from the free boson gas mg = 0, n; = 0. The specific heat
per unit length is estimated as

T 2 1 1 —in; 1 in;
~ R a —_
€3 +m°{2n'T+ "“[2 T A 17 (2 231TA3+1)

1 1 ir :
(2) . !
+ 83T (A2+1) v ( nT Aﬁ—i)j“ ®3)
for i € T and
C ~ (2 T/3)1 +m3/ Q)] (34)
for i T.
4. Summary

We have calculated the mean misfit and the specific heat of the one-dimensional quantum
sine—Gordon system with impurities for the special case of the quantum parameter, g2 = 4.
Two types of impurities are considered. We have used the Fermi—Bose relation and the self-
consistent z-matrix approximation for impurities. The effect of impurities appears at lower
temperatures, especially at the ground state T = 0. One is the change of the exponent of
the mean misfit from 1/2 in the pure system to 3/2 in our system with impurities.

For the impurity potential H. m, , the averall behaviour of the mean misfit for the case of
repulsive potential Vi > 0 is sumlar to that of the pure system except just near ji = w,. For
the case of attractive impurity potential ¥; < 0, the behaviour of the mean misfit at 7 = 0
is different from that of the pure system, since the gap energy is reduced by the impurities.
Moreover, with increasing concentration of impurities, the gap energy wg vanishes and the
density of states at «» = O becomes finite. In this case the mean misfit starts from the origin
and linearly increases near i ~ 0.

The above statements apply to the case of the impurity potential H,i,p except that the
mean misiit is induced by the impurities even when the misfit parameter [ is zero.

We note that the overall behaviours of the mean misfit w; and the specific heat per unit
Iength C at finite temperatures depend on the existence of the gap. We have made analytical
calculations of the mean misfit and the specific heat in the high- and low-temperature limits.

Here we comment on the case of a negative value of [, % < 0. For the H imp DoOtential
we can give the same results except for sign as the positive case of ji from the symimetry
of the density of states. For the H? e potential the density of states is asymmetric, s0
our discussions are confined to the case of positive value of [i except for the analytical
caiculatlons in the high-temperature limit. However, 1t Is easy to extend our discussions to
the case of negative value of .

The rewritten fermion systems (4), (7), (8) are related to the problems of one-dimensional
Anderson localization [21, 22] except for the existence of the mass term. We have obtained
the expression of the density of states by use of the r-matrix approximation for impurities
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and calculated the specific heat and the mean misfit. It is possible that our self-consistent
t-matrix approximation is inaccurate in one-dimensional problems. The density of states
near the gap energy will not be expressed as D{w) ~ (@ — wg)'/%. The critical exponent of
the mean misfit at 77 = ¢ may not be 3/2.

Here we try a simple argument on this problem. We will apply the discussion on the
Schrédinger equation with §-function potentials by other authors [22] to our Dirac-type
equations. For the repulsive potential Vj(> 0), there will be gap energy like the resuits
of our f-matrix approximation. However, the critical exponent of the mean misfit will
not be 3/2. For the attractive potential V(< ) or the second type potential V5, except
for the special case over the distance between impurities [23], the gap energy will not
exist. There will exist the edge of the band, which decreases exponentially. The critical
concentration will become zero, n;. = 0. There will be no phase transition as a function of
the chemical potential or the natural misfit at 7 = 0. In this case our self-consistent f-matrix
approximation will be valid only at intermediate temperatures—not too low temperatures.
Also at low temperatures the results for the case n; > n;. will be useful, since the critical
concentration nj, = 0.

Exact numerical calculations or Monte Carlo simulations for the density of states of our
fermion systems are now under investigation,
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