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1. Phys.: Candens. Matter 6 (1994) 9477-9494. Printed in the UK 

Impurity effect on the commensurate-incommensurate 
transition in the one-dimensional quantum sine-Gordon 
system (g2 = 47r) 

Hikaru Yamamoto 
Institute of Physics, Faculty of Education, Shiga University. Ouu 520. Japan 

Received 18 January 1994, in final form 21 July 1994 

Absiract. We have studied the behaviour of the mean misfit and the specific heat of the one- 
dimensional quantum sine-Gordon system (sz = 4n) with a misfit parameter for two models 
of impurities. We have used a Fermi-Base relation and a self-consistent t-maIrix approximtion 
for impurities. We have made numerical and analytical calculations for the man misfit and the 
specific heat for various cases. 

1. Introduction 

In a previous paper [I] we have discussed a commensurat+ncommensurate crossover in 
the one-dimensional quantum sine-Gordon system with a misfit parameter. The purpose 
of this paper is to study the effect of impurities. In order to take account of non- 
linear excitations, sine-Gordon models are widely used in many fields of condensed 
matter systems, for example, charge-density-wave (mw) systems such as tetrathiafulvalene- 
tetracyanoquinodimethane (TFTCNQ) [Z] and transition-metal dichalcogenides [3]. Also, 
impurities play an important role in many fields of condensed matter systems, for example, a 
dielectric system such as thiourea, in which the impurities stabilize the commensurate phases 
141. It is therefore a relevant and challenging issue to combine disorder (impurity) with non- 
linearity [5]. For example, commensurate-incommensurate transitions in two-dimensional 
adsorbed systems with quenched random impurities have been investigated using the replica 
and the Bethe ansatz methods [6] or the decimation method [7]. Moreover, two-dimensional 
XY magnets or solid films with quenched random disorder have been studied using the 
renormalization-group approach [S, 91 or the replica and the renormalization-group methods 
[IO]. The motion of interfaces and dislocations in disordered media has also been discussed 
[111. 

Our model in this paper treats one-dimensional disorder rather than two-dimensional 
disorder. When the randomness of impurity positions is restricted only in the misfit direction, 
the two-dimensional classical problem [6] is mapped into our onedimensional quantum 
problem. 

We consider the following one-dimensional (LD) quantum sineGordon system with a 
misfit parameter i2 for the pure system: 
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where $ ( x )  and p ( x )  are, respectively, a Bose field and its canonical conjugate momentum. 
As in [12], we investigate two @pes of impurities. One is impurities that couple to the 
potential term: 

The other is impurities that couple to the gradient OF the phase variable $(x): 

For general values of g2, equation ( 1 )  can be bansformed into the massive Thining 
model 113,141, which includes the term of the fermion interaction. This massive Thiiing 
model is exactly solved by the Bethe amatz [15,16]. At the special value of g2 = 4n, 
the fermion interaction vanishes and the model reduces to a massive free-fermion model 
Hamiltonian: 

(4) 
where $1 and $2 are fermion fields, j i  = ,E?$ and no = alcuoc/4?r (c is the lattice constant 
and a1 - O(1)). In this case we may identify the soliton as a Fermi particle. The original 
non-linearity remains as a Fermi statistic. 

Using the momentum-space operators aj,k defined as 

* j ( x )  = L-"* a,.k exp(ikx) (5) 
k 

where A: = ( C Z : . ~ , ~ , ~ ) ,  Ak is its adjoint column matrix and {oil are the Pauli matrices. 
This pure system has energy bands E = &(k2 + m;)'/2. The impurity potential terms are 
written as 

where VI = aIUoc and VZ = &VO. 
We use a 2 x 2 matrix thermal Green function, 6 k . p ( ~ )  = -(TrAk(r); AI[,(O)), where 

I"? is Wick's notation of the ordering operator for the imaginq time t. For the pure system 
(H&) the Fourier transform of @ ( r )  is given by 

B:(io,,) = [io,, + - ( k q  +maul)]-' (9) 
where w, = k T ( n  + $), with n being intezer, are the Matsubara frequencies. 

In [12], we have considered the same sine-Gordon system, but with no misfit parameter, 
i.e. $ = 0. There we have used the self-consistent r-matrix approximation for impurities 
and derived the expression for the density of states. In our problem we make the same 
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io,, + F. in approximation for impurities. Then the results are only to rewrite io, 
equations (15)-(18) of [12]. For the impurity potential HAp,  we obtain 

For the impurity potential H&, we obtain 

Here Gn and lirn are, respectively. the renormalized frequency and the renormalized mass 
of the Green function averaged over the random spatial distribution of impurities: 

(12) E,(io,) = [iGn - (kq? +final)]-'. 

The concentration of impurities is denoted by~ni.  
Defining U, = Gn/gn,  we obtain from (loa) and (lob) that 

and from (I la)  and (1%) that 

Here A]  = 11% + V1/4 and Az = l /Vz - Vz/4. By replacing iU, + U and io, + w in 
(13) and (14), we get analytically continued equations: 

(15) 

(16) 

The mean misfit (or windins number) w is related to the fermion number N = 

(17) 

. .  o + & = Umo t njU/[Al + L/(l - U2)’’21 

U+ 6 = Umo + n ; / [ A z  t U / ( l ~ -  

In (15) and (16), U is determined as a function of w + ,L, U = U(o +- 6). 

N ( b ,  ni, TI ,  

w = (i/fi)(a@/ax) = - ( N  - nro)/r. 
where No is the fermion number when = 0 and q = 0. The fermion number N can be 
expressed with use of the density of states D(w and the Fermi distribution function f(o): 

N(p ,n j ,T)=  - D(o)f(o-,L)dw (18) 

(19) D ( W )  = Im(u(o)/[l - U ~ ( W ) J ‘ / * )  

f ( w )  =,1/(eWIT +- I). (20) 

n “ S  
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At finite temperature T the mean misfit is divided into three parts: 

WI = -t“ii ,  ni, T )  - N(0,  ni. T).l/L 

w2 = -[N(O, ni, T )  - N(0, nj, O)]/L 

(21) 

(22) 

w3 = -[N(O, ni, 0) - NCO, O,O)]/L. 
The specific heat per unit length is written as 

do. 
1 - 2  c = -  . (w) (w- f i )  

x ./ 2Tz 1 + cosh[(o - @)/TI 
In the following sections w e  will discuss the above mean misfit and the specific heat of 

the system. 

2. Impurity potential HAp 

2.1. Ground-state properties of the mean mi& 

We will start from the discussion of the ground-state properties of the mean misfit. At 
T = 0, the fermion number is 

N(pi, ni, T = 0) = 

This is analytically calculated to become 

Here U is determined by putting w = 0 in (15): 

ji = moU +niU/[Al + 1/(1 - U2)’/2] .  
Then the mean misfit at T = 0 is written as 

This behaviour is shown in figure l (a )  for V, > 0 and in figures Z(a) and 3(a) for VI c 0. 

2.1.1. VI > 0. For the repulsive impurity potential V, 0, there is a gap energy wg for 
all concentration of impurities. For 101 <‘us, the density of states is zero. Near the gap 
energy, the density of states is expressed as 

where U, is the corresponding value of wg, and a = -[d2(w/mo)/dU2]v,,/2. Integrating 
D(w) with respect to w from og to ,E, we obtain the mean misfit: 
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“vm, 
as-@) $m0= 

1.4 

0.0 0.5 ~ 1.0 l-5 T/m,  
Figure 1. (a) Behaviour of the mean misfit as a function of the parameter fi ar various 
temperatures TJmo = 0. 0.2 and 0.6 (VI = 1.0. nilmi] = 0.1). The linear line w = -fila 
is  that for the high-tempemure limit. An enlarged scale is used in the right part to elucidare 
the critical behaviour of the mean misfit at G - (b)  Behaviour of the mean misfit as a 
function of t e m p e m r e  for a set of parameters f i lmu = 0.2, 0.4. 0.6, 0.8. 1.0, 1.2 and 1.4 
(VI = 1.0. niJmo = 0.1). (c) Behaviour of the specific heat 3s a function of tempemmre for B 

set  of parameters EJm, = 0, 0.4, 0.6, 0.8. 1.0. 1.2 and 1.4 (VI = 1.0, n i j n ~  = 0.1). Here the 
specific heat for a msless  boson gas with no impurities is subtracted. AC = C - aTJ3. 

For low concentration of impurities, U,” - 1 - (ni/mo)’ and a ’- (ni/mo)-’/Z. Then the 
mean misfit is written as 
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/ ~ - 0 . 6  

0.0 
0.0 
0.0 05 1.0 p/mp 15 

I I I 
0.0 05 1.0 T/Q 2.0 

I I 

Figure 2. [n) Behaviour of me mean misfit as a function of the parameter fi  at various 
temperatures T/me = 0, 0.2 and 0.6 (Vi = -213, njjmli = 0.1). The linear line w = -P/n is 
that for the high-temperature limit. (b) Behaviour of the mean misfit as a function of temperature 
for a set of parameters Ffms = 0.2. 0.4, 0.6. 0.8 and 1.0 (VI = -213, nilmo = 0.1). (c) 
Behaviour of the specific heat as a function of temperature for n set of parameters fi/me = 0. 
0.4, 0.6. 0.8, 1.0, 1.2 and 1.4 (VI = -213, n;/mo = 0.1). Here the specific heat for a massless 
boson gas with no impurities is subtracted. AC = C - nTJ3. 

The exponent of the deviation of /2 from the gap energy is 3/2, which is different from that 
of the pure case, 112 [I, 171. From the left part (T = 0) of figure 1(a) the exponent seems 
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0.1 

0.5 1.0 15 ~h 2D 0.0 

1 , I , 
0.5 1.0 15 T/m, 20 ' 0.0 

Figure 3. (4 Behaviour of the m m  misfit 3s a function of the parnmeter B ac various 
temperaolres Tlmo = 0.0.2 and 0.6 (Vi = -2/3, nilmu = 0.8). The l i a r  line w = -c/z is 
that for the high-temperature limit. (b) Behaviour ofthe m a  misfit 3s a funcbn of temperature 
for a set of parameten Flmo = 0.2,0.4.0.6 and 0.8 (VI = -213. rqlnq) = 0.8). (c)  Rehoviour 
of the specific heat 3s a function of temperature for P set of pmmeted i l m , ,  = 0, 0.4, 0.6 
and 0.8 (VI = -213, n;lnqb = 0.8). Here the specific heat for a massless boson gas with no 
impuritier is subtracted, AC = C - zT/3.  

t 

to be 1/2, but enlarged scale (the right part) clearly shows that the exponent is not 1/2 but 
3/2. 
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2.1.2. V, < 0.  For the attractive impurity potential VI < 0, there is a gap energy 
og for the impurity concentration ni, -which is smaller than the critical concentration nie 
(= (-A, - 1)mo). Near the gap energy the expression of the mean misfit is the same 
as (30). The exponent of the deviation of f i  from og is 312. For low concentration of 
impurities, U, - UBI and a - (1 - U~l)-314(nj /mo)-1~.  where UBI is the normalized 
bound-state position, U,, = 11 - V:/41/(1+ V:/4). Then the mean misfit becomes 

We show the behaviour of the mean misfit in figure 2(a). It shows that the exponent of the 
deviation of ii from og is 3f2. 

For the impurity concentration ni > ni,, the density of states at o = 0 is finite. The 
mean misfit shows a linear dependence on ,C for smaller values of f i :  

w ~ - D -  o!Nx ( 3 3 )  

DO = [(l + A I  +ni/mo)(l - A I  -ni /na~)l”~.  

where DO is the density of states at o = 0: 

(34) 

We show the behaviour of the mean misfit in figure 3(a). It clearly shows the linear 
dependence on ii for smaller values of f i . 

2.2. Finite-temperature properties of the mean misfit 

For the impurity potential HA,, w l  becomes 

WI =-- ‘ / N w ) [ f ( w  - f i )  - f(d1 do. (35) 
Tr 

Using the symmetric property of the density of states D(w)  = D(-w), we obtain 

m sinh(fi/ T )  
W ]  = -- 

% a  ’ ./ D(W)cosh(b/T) +cosh(o/T) do. 

The other parts w2 and w3 become zero. We show the behaviour of the mean misfit 
W I  in figure l (a )  (VI > 0) and figures Z(a) and 3(u) (VI < 0) as a function of the 
natural misfit [the chemical potential f i )  at two temperatures T/mo = 0.2 and 0.6. For 
the case of finite gap energy, the mean misfit increases exponentially at lower temperature 
T/mo = 0.2 but linearly at higher temperature T / m o  = 0.6 and approaches the linear 
line W I  = -fi/z (figures I@) and 2(a)). For the concentration n; z ni, (figure 3(a); 
V ,  = -2/3, ni/mo = 0.Q the mean misfit shows a linear dependence on f i  for smaller 
values of f i  and approaches the linear line W I  = -b/% with increase of temperature. In 
figures I@), 2(b) and 3(b), we show the mean misfit as a function of temperature for a set 
of parameters fi/mg = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 (figure I@)), h/mo = 0.2, 0.4, 0.6, 
0.8, 1.0 (figure 2(b)) and G/mo = 0.2, 0.4, 0.6, 0.8 (figure’3(b)). For the case of finite 
gap energy (figures l(b) and Z(b)), the curves tend to-zero at zero temperature for smaller 
values ol‘ f i (< og) but tend to finite value for larger values of fi(> wg). For the case of 
zero gap energy (figure 3(b)), the curves tend to finite values at zero temperature. 

Next we will give the analytical expressions of.che mean misfit for several limiting 
cases. 
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2.2.1. Lower temperatures. At lower temperatures we will use the density of states (29) 
estimated near the gap energy for ni c nit, 

The case of VI > 0 corresponds to the infinite critical concentration niC --t w, and we 
always use this form for any concentration of impurities. The mean misfit is given by the 
following expressions for the three cases: 

(0 fi  < og 

(ii) f i  = og 

Here ((s) is a zeta function and <(3/2) Y 2.612, ((2) = a2/6 Y 1.645. 

misfit becomes 
For ni > nit. the density of states is estimated as D(w) - DO + D2w2. Then the mean 

w - - D -  op/iz - D ~ ~ ( I ~ T ~  + fi2)/3n (40) 

which shows a linear dependence on f i  for smaller values of f i .  
For the critical impurity concentration ni = nit, the density of states is estimated as 

D(w) - (&/2)[-2(Ai + l ) l ” 3 ( l ~ l / m o ) ‘ ~ 3 .  (41) 

Then the mean misfit becomes 

for iic >> T and 

for ii << T. 
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2.2.2. Higher temperatures. At higher temperatures it is convenient to use the following 
expression for the fermion number: 

where U, is determined in (13). At higher temperatures T >> mo, ni, IU,l becomes large 
and is approximated as 

U,, - ( o n - i L i j l / A : ) / ( m o f n i / A ~ )  (45) 

where we take the upper sign + for on > 0 and the lower sign - for on < 0. Then the 
fermion number becomes 

(46) 

where @(n)(z) are poly-gamma functions. We will give the expressions for the mean misfit 
w at higher temperatures in the two limiting cases: 

(i) L <( T 

2.3. Spec@c heat 

In this section we will discuss the specific heat of the system. In figures l (c ) ,  2(c) and 
3(c) we show the behaviour of the specific heat as a function of temperature for a set of 
parameters (or chemical potentials) 3. We have subtracted the specific heat for a massless 
boson gas with no impurity, C = a T / 3 ,  which is just :he high-temperature h i t  of the 
system. Figures I(c) (V, = 1, ni/mo = 0.1, o,/mo N 1.0040) and 2(c) (V, = -2/3, 
ni/mo = 0.1, wg/mo = 0.4695) are like each other,and correspond to the case of finite gap 
energy. Figure 3(c) (VI = -2 13, ni/mo = 0.8) corresponds to the case of zero gap energy. 

Next we will give the analytical expressions for several limiting cases. 

2.3.1. Lower temperatures. At lower temperatures we will use the density of states (29) 
estimated near the gap energy for ni < nit. Then the specific heat per unit length is given 
by the following expressions for each case: 

(i) F < os 
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(ii) f i  = 0, 

Here C(5/2) = 1.341. 
For nj > nit, the specific heat is estimated as 

C - ltDoT/3 + (nD2T/3)(P2 + 7nZT2/S) .  

For the critical impurity concentration nj = nit, the specific heat is estimated as 

C - (&/2)[-2(Ai + l) l ' /3(i i /mo)''3rT/3 

for p >> T and 

C - (&/2)[-2(AI -t l ) ] 1 / 3 ( Z T / x ) ( l  - Z4/')r(lO/3)C(7/3) 

for 
(41) for the density of states and the table in [18]. 

<< T .  Here r (10 /3 )  Y 2.778 and 5(7/3) 1.415. In obtaining (54) we have used 

2.3.2. Higher temperatures. At higher temperatures it is convenient to use the method 
of Luttinger and Ward 1191 to calculate the thermodynamic potential of the system. We 
expand the thermodynamic potential over (mo + n i / A l ) / T  and differentiate this potential 
with respect to ~ T .  Then the entropy of the system per unit length becomes 

From this entropy we get the specific heat of the system, 

for p << T and 

for p >> T .  
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3. Impurity potential qmp 
3.1. Ground-state properties of the mean misfit 

At T = 0, the fermion number (equation (18)) is analytically calculated to become 

- ni log (AZ + (1 - U U2)’/2 ,’I +nitan-’ (i) +*) 
Here U is determined by putting o = 0 in (16), 

,Li = moU + n;/[Az + U/(1 - U2)’”] .  (59) 

Then the first p a t  of the mean misfit at T = 0 is written as 

This behaviour is shown in figure 4(a) (VZ = -2/3,ni/mo = 0.15). In figure 4(a), the 
impurity concentration ni is assumed to be smaller than the critical concentration nit, in 
which the density of states at o = 0 becomes zero (equations (51)-(53) and figure 5 in 
[ZOJ). For n; c: nit, there are two gap energies og l (>  0) and w g z ( c  0). For wpz c w < wgl. 
the density of states is zero. Near j i  - wsl, the mean misfit is given by 

where Q = -4 dz(w/mo)/dUil and U,’ is the corresponding value of the gap energy og,, 
The exponent of the deviation of @ from ogl is 312. For ni > nit, the mean misfit shows a 
linear dependence on f i  for smaller values of fi ,  

W I  - -D&/n (62) 

where Do is the density of states at o = 0. The second part of the mean misfit wz vanishes, 
The thud part w3 becomes 

wg = - (ni /x)  tan-’(l/Az) (63) 

for nj c ni, and 

for ni > niE. We note that w3 is not zero, in contrast to the case of the HAp potential. 
This shows that a mean misfit is induced by impurities. The behaviour of wg IS shown in 
figure 4(b).  For ni z nit, wg deviates from the linear line. This deviation is proportional to 
(ni - nic)3/z at nj - ni,. 
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3.2. Finite-temperature properties of the mean misfit 

For the impurity potential H&, the first part of the mean misfit W I  becomes 

(65) 

We show this behaviour in figure 4(a)  (V, = -2/3, nJmo = 0.15) as a function of i~ 
at three temperatures Tjmo = 0.2, 0.6 and 1.6. In this case of finite gap energies wgl 
(> 0) and og. (< O), the mean misfit increases exponentially at lower temperatures but 
linearly at higher temperatures and approaches the linear line w = -,ii/n. In figure 4(c) 
(V, = -213, ni/mo = 0.15) we show the mean misfit wl as a function of temperature for 
a set of parameters film0 = 0.2, 0.4, 0.6, 0.8. For fi  < 09, the mean misfit tends to zero 
as T approaches zero. In figure 4(d)  (V, = -2/3, ni/mo = 0.15), we show the second part 
of the mean misfit wz as a function of temperature. This part is related to the asymmehic 
property of the density of states, D(-w) # D(o) .  

Next we will give the analytical expressions of the mean misfit for several limiting 
cases. 

3.2.1. Lcweriemperatures. At lower temperatures we will use the density of states estimated 
near the gap energy wgl for ni < ni,, 

W I  = -- / w J ) C f ( w  - L) - fkJ)ldOJ. 
K 

Then the mean misfit is given by the following expressions for each case: 

(9 L < 
T3/2e-%i/T e@/r - 1 

W l  - - 
(namo)'lz(l - u;,).?/z 2 

(ii) ,C = wgl 

(iii) F > wg, 

For the impurity concentration ni 
the mean misfit becomes 

nit, the density of states is estimated as D(fi) .  Then 

wi - -D(L)iLtn (70) 

which shows the linear dependence on f i  for smaller values of P, since D(P)  - DO for 
j i  - 0. For the critical impurity concentration ni = qs, the density of states is given by 
(66) by putting 0 9 1  = 0. Then the mean misfit becomes 
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p/m,= 
0.8 
0.6 
OA 

0.1 ao ao k 05 1.0 T/m, 20 0.2 

Figure 4. ( 0 )  Behaviour of the mean misfit WI as a function of the parameter ii at various 
temperahues Time = 0. 0.2, 0.6 and 1.6 (Vz = -2/3,ni/mo = 0.15). The linear line 
w = -P/n is thaf for the high-temperature limit. (b) Behaviour of the mean misfit wg at 
T = 0 as B function of impurity concentration ni (V2 = -213). ( e )  Behaviour of the mean 
misfit WI a function of temperature for a set of parametea &/me = 0.2. 0.4, 0.6 and 0.8 
(Vz = -213, ni/m<l = 0.15). (d)  Behaviour of the mean misfit wz as a function of temperature 
(VI = -213, ni/m,l= 0.15). (e) Behaviour of the specific heat as a function of temperature for 
a set of parameters f i lm[ )  = 0, 0.2, 0.4, 0.6. 0.8, 1.0. 1.2 and 1.4 (VI = -213. ni/mo = 0.15). 
Here the specific heat far 8 massless boson gas with no impurities is subtracted. AC = C-nT13.  

where 

It is possible to make analytical calculations for the second part of the mean misfit w2 
at low temperatures. For ni < nie, 
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I ’  1 I I I 
2.0 r/m, 

0.0 05 1.0 1.5 

Figure 4. (Continued) 

where we have used the f o m  D(w) - Do f Dlo for the density of states at o - 0. 

3.2.2. Higher remperutures. At higher temperatures it is convenient to use the following 
expression for the fermion number: 

where U, is determined in (14). At higher temperatures T > mo. ]U,/ becomes large and 
is approximated as 

U, - [U, - i$ + ini/(Az f i)]/mo (75) 
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where we take the upper sign + for w. 
fermion number becomes 

0 and the lower sign - for on e 0. Then the 

We will give the expressions of the mean misfit w at high temperatures in the two limiting 
cases: 

(i) f i ,  ni < T 
(77) 

Here @')(1/2) = -14[(3) N -16.829. 

3.3. Spec$c heat 

In this section we will discuss the specific heat of the system. In figure 4(e) (V2 = -2/3, 
ni /mo = 0.15) we show the specific heat per unit length as a function of temperature for 
a set of misfit parameters f i /mo = 0 ,  0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4. We have subtracted 
the specific heat for a massless boson gas of no impurities, C = nT/3, which is just the 
high-temperature limit of the system. In this case of finite gap energies (oSl /mo r 0.343 95, 
og2 N -1.00841), figure 4(e) is similar to figure l(c) or 2(c). 

Next we will $ive the analytical expressions for several limiting cases. 

3.3.1. Lower temperatures. At lower temperatures we use the density of states (66) for 
ni < nit. The results are only to change wg -+ 0,1, U, + U,] in (49)-(51). For ni > nit, 

the specific heat is estimated as 

C - nD(fi)T/3 (79) 
with the density of states at o = f i .  For the critical concentration nj = nit, the density of 
states is given by (66) by putting wzl = 0, i.e. 

for o > 0 and D(w)  = 0 for o < 0. Then the specific heat per unit length is estimated as 

for f i  >> T and 

for j2 - 0. 



Impuriry effect in ID quantum sinexordon system 9493 

3.3.2. Higher temperatures. At higher temperatures we use the same method as in 
section 2.3.2. We expand the thermodynamic potential over mo/T and differentiate this 
potential with respect to T .  Then the entropy per unit length becomes 

The first term is the contribution from the free boson gas mo = 0, ni = 0. The specific heat 
per unit length is estimated as 

for ,k << T and 

C - (nT/3)[1 + mi/(2bz)1 
for f i  > T .  

4. Summary 

We have calculated the mean misfit and the soecific heat of : one-dimension; pantum 
sineGordon system with impurities for the special case of the quantum parameter, g 2  = 4r. 
Two types of impurities are considered. We have used the Fermi-Bose relation and the self- 
consistent t-matrix approximation for impurities. The effect of impurities appears at lower 
temperatures. especially at the ground state T = 0. One is the change of the exponent of 
the mean misfit from 112 in the pure system to 312 in our system with impurities. 

For the impurity potential H&p, the overall behaviour of the mean misfit for the case of 
repulsive potential Vi > 0 is sirmlar to that of the pure system except just near b '= or For 
the case of attractive impurity potential VI < 0, the behaviour of the mean misfit at T = 0 
is different from that of the pure system, since the gap energy is reduced by the impurities. 
Moreover, with increasing concentration of impurities, the gap energy og vanishes and the 
density of states at o = 0 becomes finite. In this case the mean misfit starts from the origin 
and linearly increases near b - 0. 

The above statements apply to the case of the impurity potential H L P  except that the 
mean misfit is induced by the impurities even when the misfit parameter /I. is zero. 

We note that the overall behaviours of the mean misfit W I  and the specific heat per unit 
length C at finite temperatures depend on the existence of the gap. We have made analytical 
calculations of the mean misfit and the specific heat in the high- and low-temperature limits. 

Here we comment on the case of a negative value of @, f i  < 0. For the HAp potential 
we can give the same results except for sign as the positive case of f i  from the symmetry 
of'the density of states. For the HkP potential the density of states is asymmetric, so 
our discussions are confined to the case of positive value of iL except for the analytical 
calculations in the high-temperature limit. However, it is easy to extend our discussions to 
the cas; of negative value of f i .  

The rewritten fermion systems (4), (7), (8) are related to the problems of one-dimensional 
Anderson localization [Zl, 221 except for the existence of the mass term. We have obtained 
the expression of the density of states by use of the t-matrix approximation for impurities 
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and calculated the specific heat and the mean misfit. It is possible that our self-consistent 
t-matrix approximation is inaccurate in one-dimensional problems. The density of states 
near the gap energy will not be expressed as D(w) - (U - wg)'/*.  The critical exponent of 
the mean misfit at T = 0 may not be 3/2. 

Here we by a simple argument on this problem. We will apply the discussion on the 
Schrodinger equation with &function potentials by other authors [22] to our Dirac-type 
equations. For the repulsive potential V, (> O), there will be gap energy like the results 
of our t-matrix approximation. However, the critical exponent of the mean misfit will 
not be 3 0 .  For the attractive potential Vr(< 0) or the second type potential V2, except 
for the special case over the distance between impurities [23], the gap energy will not 
exist. There will exist the edge of the band, which decreases exponentially. The critical 
concentration will become zero, njs = 0. There will be no phase transition as a function of 
the chemical potential or the natural misfit at T = 0. In this case our self-consistent t-matrix 
approximation will be valid only at intermediate temperatures-not too low temperatures. 
Also at low temperatures the results for the case ni =- njc will be useful, since the critical 
concentration ni, = 0. 

Exact numerical calculations or Monte Carlo simulations for the density of states of our 
fermion systems are now under investigation. 
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